UNIVERSITAS GUNADARMA
FAKULTAS TEKNOLOGI INDUSTRI
Komputasi Modern
Kelompok 4 :
Mougy Jessie
Muhamad Riski Maulana
Muhammad Ardoni
Nama : Muhamad Riski Maulana
Kelas : 4IA21
NPM : 54418375
Nama Dosen : ADAM HUDA NUGRAHA
Jakarta
2022
Definisi quantum entanglement
Quantum entanglement adalah bagian dari fenomena quantum mechanical yang menyatakan bahwa dua atau lebih objek dapat digambarkan mempunyai hubungan dengan objek lainnya walaupun objek tersebut berdiri sendiri dan terpisah dengan objek lainnya.
Quantum entanglement merupakan salah satu konsep yang membuat Einstein mengkritisi teori Quantum mechanical. Einstein menunjukkan kelemahan teori Quantum Mechanical yang menggunakan entanglement merupakan sesuatu yang “spooky action at a distance” karena Einstein tidak mempercayai bahwa Quantum particles dapat mempengaruhi partikel lainnya melebihi kecepatan cahaya. Namun, beberapa tahun kemudian, ilmuwan John Bell membuktikan bahwa “spooky action at a distance” dapat dibuktikan bahwa entanglement dapat terjadi pada partikel-partikel yang sangat kecil.
Penggunaan quantum entanglement saat ini diimplementasikan dalam berbagai bidang salah satunya adalah pengiriman pesan-pesan rahasia yang sulit untuk di-enkripsi dan pembuatan komputer yang mempunyai performa yang sangat cepat.
beberapa fungsi yang mungkin dapat diterapkan dari fenomena ini dalam kehidupan sehari-hari. Berikut beberapa fungsi yang saya rangkum dari artikel2 dan jurnal:
1. Sistem Komunikasi Supercepat
Dua partikel yang ter-entangle seolah-olah dapat berkomunikasi secara instan. Walaupun kedua partikel itu terpisah oleh jarak yang sangat jauh. Di bumi, komunikasi dengan gelombang radio dapat berlangsung secara cepat dan tanpa masalah karena gelombang radio itu sendiri berjalan dalam kecepatan yang kurang lebih sama dengan cahaya. Jarak satu tempat ke tempat lain di bumi ini masih dapat ter cover oleh kecepatan seperti itu.
Namun jika bicara tentang perjalanan antar planet, seperti misi di Mars. Jarak yang memisahkan antara bumi dan Mars membuat komunikasi menjadi pelik. Sekarang, komunikasi dari Mars ke Bumi bisa mempunyai renggang waktu sekitar 48 menit. Jika ini hanya pengiriman data biasa, tidak ada dampak signifikan yang berakibat fatal terhadap sistem. Namun jika keadaan darurat, maka jeda waktu seperti itu sangat signifikan. Apalagi jika misi manusia ke Mars jadi dilaksanan. Keadaan darurat harus segera ditangani dan advise yang diberikan dari bumi akan sangat berpengaruh terhadap keberhasilan misi.
Saat ini, ilmuwan memang belum berhasil mengirimkan data yang kompleks dengan quantum entanglement. Tapi, state yang ringkas seperti jika keadaan di tempat satu 0, maka di tempat sebaliknya adalah 1 sudah berhasil dilakukan. Dan 0 serta 1 ini adalah basic pertama dari sistem komputasi. Jika data yang kompleks berhasil dibuat, maka tidak menutup kemungkinan sistem komunikasi dengan quantum entanglement akan segera terwujud.
2. Sistem Enkripsi
Selama ini, enkripsi bekerja dengan menggunakan sebuah kunci (key). Dimana pengirim mempunyai kunci terseut dan penerima juga mempunyai kunci yang sama. Jika penerima menerima pesan yang dikirimkan oleh encoder, maka kunci yang ia miliki dapat berfungsi menjadi sebuah decoder. Sistem seperti ini relatif aman, namun kemungkinan orang lain mempunyai kunci yang sejenis (atau hampir sama) tak dapat dianggap enteng.
Quantum entanglement dapat menjadi solusi untuk celah sistem enkripsi tersebut. Dengan Quantum entanglement, seorang encoder dapat menciptakan kunci dari dua buah partikel yang di entangle-kan. Dan ini berarti bahwa dua buah partikel ini adalah satu-satunya pasangan entangle di seluruh alam semesta. Tidak mungkin untuk digandakan atau dicari padanannya. Jika sistem enkripsi mampu menggunakn quantum entanglement, maka dapat dibilang kode yang dihasilkan nyaris tidak mampu dipecahkan. Kecuali jika ia menggunakan salah satu dari partikel yang di entangle-kan tersebut.
3. Sistem Waktu Presisi
Waktu adalah sebuah entitas yang penting. Waktu bukan hanya mejelaskan keadaan atau kejadian berada namun juga menjadi tolok ukur yang berharga. Sekarang, kita mengukur waktu kebanyakan dengan menggunakan sistem analog, atau beberapa juga menggunakan sistem digital. Namun, sistem ini masih mempunyai kekurangan karena banyak terdapat interferensi. Iterferensi dapat terjadi karena kesalahan manusia, elektronik, maupun gelombang magenetik atau gravitasi dari bumi. Karena itulah, konsep jam atom (atomic clock) mulai digulirkan.
Ketepatan jam atom bergantung sebagian pada jumlah atom yang digunakan. Karena disimpan di ruangan vakum, setiap atom secara independen mengukur waktu dan terus mengawasi perbedaan lokal secara acak antara dirinya dan atom2 tetangganya. Jika ilmuwan menjejalkan 100 kali lebih atom ke jam atom, jam atom menjadi 10 kali lebih tepat, tapi ada batas pada berapa banyak atom yang dapat dimasukan. Tujuan besar ilmuwan berikutnya adalah untuk berhasil menggunakan quantum entanglement untuk meningkatkan presisi. Sehingga lebih banyak atom yang dapat digunakan untuk mengukur waktu. Semakin banyak atom, semakin presisi sistem. Dan tingkat presisi jam atom ini kemungkinan akan dapat bertahan 5 milyar tahun. Jauh lebih lama dari perkiraan usia bumi sendiri.
4. Super Komputer
Selama ini komputer bekerja menggunakan sistem binary digit atau bit. Namun di masa mendatang, ada kemungkinan komputer akan menggunakan sistem quantum digit atau qubit. Apa perbedaannya? Sistem binary digit menggunakan pengukuran yang tetap, antara bilangan biner 0 dan 1. Namun qubit mampu menghasilkan kemampuan komputasi yang lebih tinggi karena 0 dan 1 dapat terjadi dalam satu keadaan, atau keadaan Quantum.
God god doesn’t throw dice, kurang lebih begitulah yang Einstein katakan waktu meniliti fenomena quantum ini. Dia tidak percaya bahwa sebuah partikel dapat mempunyai dua keadaan sekaligus. Di mana kita tidak mampu untuk mengetahuinya sebelum sebuah pengukuran dilakukan. Namun ternyata seperti itulah basic fundamental alam semesta ini bekerja. Dan jika manusia mampu mengambil benefitnya, kita mampu menciptakan superkomputer yang jauh lebih optimal dari yang ada sekarang.
Apa gunanya mempunyai superkomputer yang luar biasa itu? Apakah manusia mampu memperoleh keuntungan langsung darinya? Kita tidak tahu secara pasti, namun banyak permasalahan di dalam ilmu pengetahuan yang belum dapat terjawab sampai sekarang karena kita tidak mempunyai super komputer yang cukup canggih. NASA misalnya, masih berusaha menciptakan simulasi alam semesta dari mulai awal bigbang sampai sekarang. Namun, mesin yang mereka sebut sebagai Bholsoy itu masih jauh dari sempurna.
5. Pengiriman Barang dan Mungkin Manusia
Pengiriman data secara kecil sudah mampu dilakukan. Namun memang pengiriman data secara besar belum dapat dilakukan secara baik.
Tapi bagaimana jika pengiriman data secara besar dapat dilakukan. Dengan menggunakan identifikasi per partikel, sebuah data besar dan mungkin barang ukuran cukup besar dapat dikirim dengan fenomena ini. Tidak menutup kemungkinan, sebuah barang dari bumi dapat dikirimkan misalnya ke pos koloni di Mars. Dalam waktu instan tanpa perlu adanya penerbangan fisik ke sana. Jika pengiriman barang dapat dilakukan, apakah mungkin pengiriman manusia dapat dilakukan. Prof Michio Kaku dan Bryan Green pernah mengatakan ya, pada salah satu wawancara yang ia lakukan. Hanya saja ada satu masalah yang harus dipecahkan terlebih dahulu.
Pengiriman manusia dengan menggunakan sistem seperti teleportasi sangatlah riskan. Manusia harus dipecah-pecah bahkan dalam level atom, dan kemungkinan juga struktru DNA harus dipisahkan satu sama lain. Jika penyusunannya gagal, bahkan di level DNA sekalipun. Misalnya ada 0,0001 DNA yang gagal tersusun, maka kemungkinan kita tidak akan berbentuk seperti kita sekarang ini. Butuh sebuah super komputer yang mampu memproses enkripsi tersebut. Dan kemungkinan besar, poin nomor 2 dan 4 menjadi penting.
Bell’s Theorem
Teorema Bell adalah istilah yang mencakup sejumlah hasil yang terkait erat dalam fisika, yang semuanya menentukan bahwa mekanika kuantum tidak sesuai dengan teori variabel tersembunyi lokal.
Teorema Bell dirancang oleh fisikawan Irlandia John Stewart Bell (1928-1990) sebagai alat untuk menguji apakah partikel yang terhubung melalui keterikatan kuantum mengkomunikasikan informasi lebih cepat daripada kecepatan cahaya. Secara khusus, teorema mengatakan bahwa tidak ada teori variabel tersembunyi lokal yang dapat menjelaskan semua prediksi mekanika kuantum. Bell membuktikan teorema ini melalui penciptaan Bell ketidaksetaraan, yang ditunjukkan oleh eksperimen untuk dilanggar dalam sistem fisika kuantum, sehingga membuktikan bahwa beberapa ide di jantung teori variabel tersembunyi lokal harus salah.
Properti yang biasanya jatuh adalah lokalitas - gagasan bahwa tidak ada efek fisik bergerak lebih cepat daripada kecepatan cahaya.
Keterkaitan Kuantum
Dalam situasi di mana Anda memiliki dua partikel , A dan B, yang terhubung melalui belitan kuantum, maka sifat A dan B berkorelasi. Sebagai contoh, putaran A bisa 1/2 dan spin B mungkin -1/2, atau sebaliknya. Fisika kuantum mengatakan kepada kita bahwa sampai pengukuran dilakukan, partikel-partikel ini berada dalam superposisi dari keadaan yang mungkin. Putaran A adalah 1/2 dan -1/2. (Lihat artikel kami tentang eksperimen pemikiran Kucing Schroedinger untuk mengetahui lebih banyak tentang gagasan ini. Contoh khusus ini dengan partikel A dan B adalah varian dari paradoks Einstein-Podolsky-Rosen, sering disebut EPR Paradox .)
Namun, begitu Anda mengukur putaran A, Anda tahu pasti nilai putaran B tanpa harus mengukurnya secara langsung. (Jika A memiliki putaran 1/2, maka putaran B haruslah -1/2.
Jika A memiliki putaran -1/2, maka putaran B haruslah 1/2. Tidak ada alternatif lain.) Teka-teki di jantung Teorema Bell adalah bagaimana informasi itu dikomunikasikan dari partikel A ke partikel B.
Baca juga